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Abstract:  
The main objective of this paper is to contribute to a better understanding 
of the dynamic response of FRP rectangular plates through modal analysis. 
The Ritz’s approximation method originated from the principle of minimum 
potential energy and was chosen to formulate the Eigenvalue problem. The 
natural frequencies and mode shapes are determined for the first 36 free 
vibration modes by assuming the double Fourier series functions for the 
transverse displacement. The most common Beam functions are used as a 
functional basis. Results are shown for the specific plate problem of Angle 
ply rectangular plate clamped at one edge, supported at two adjacent 
edges, and accessible at another edge (CSSF). It is observed that maximum 
natural frequencies are obtained under the clamped boundary of the plate 
on all edges of (CCCC) for the rectangular laminates. 
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1. INTRODUCTION   
 

There are two main methods to address 
engineering problems in general, namely, analytical 
and numerical methods. Analytical methods give 
closed-form solutions to the problems. However, 
they are only sometimes easily attainable for plates 
with mixed boundary conditions, discontinuities at 
their edge support, and plates with irregular 
boundaries. Though analytical methods are 
preferable, they become cumbersome sometimes 
due to the difficulty of satisfying the governing 
differential equations with anticipated boundary 
conditions. So, the numerical techniques provide 
quick approximate solutions close to exact solutions 
without affecting the accuracy of the solution. 

Much work on the damping analysis utilizing 
Ritz’s method has been cited in the literature. The 
limitation of damping characteristics has been 
discussed in papers [1-3]. Damping characters are 
predicted experimentally and analytically for the 
interleaved viscoelastic orthotropic plates in [4], 
respectively. Fasana et al. [5] used the Rayleigh-Ritz 
method to predict the dynamic behavior of beams. 

Narita [6] used Ritz’s method to calculate the 
frequencies of anisotropic rectangular plates for 
different boundary conditions. Bahrami et al. [7] 
have attempted to predict the model properties of 
free-free FRP plates using the Finite Element 
Method. Ritz’s method is a well-known 
approximate method used for over a century in 
classical mechanics and has been successfully 
implemented in the vibration analysis of beams and 
plates [8, 9]. This method with geometrically 
admissible functions always gives upper-bound 
solutions.  

Liu and Banerjee [10] introduce a novel spectral-
dynamic stiffness method for free vibration analysis 
of plates with arbitrary boundary conditions. The 
research enhances the analytical methods available 
for studying plate vibrations. He et al. [11] 
investigate in-plane vibrations of rectangular plates 
with periodic homogeneity. He, Chen, and Qiao 
provide insights into natural frequencies and their 
adjustment, contributing to understanding 
composite plate dynamics. Shi et al. [12] present a 
unified method for free vibration analysis of circular, 
annular, and sector plates with arbitrary boundary 
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conditions. This study expands the analytical 
methods for diverse plate geometries. Najarzadeh 
et al. [13] explore the free vibration and buckling 
analysis of thin plates subjected to high gradient 
stresses, employing a combination of finite strip and 
boundary element methods. This research provides 
insights into plate behavior under extreme loading 
conditions. 

Mahapatra and Panigrahi [14] analyze the 
dynamic response and vibration power flow of 
rectangular isotropic plates using the Fourier series 
approximation and a mobility approach. This 
research contributes to understanding isotropic 
plates’ energy transfer and response characteristics. 
Li et al. [15] investigate the vibration analysis of 
functionally graded porous cylindrical shells; Li et al. 
employ a semi-analytical method. This study 
extends the understanding of composite shell 
vibrations, specifically considering porosity and 
material gradients. Li et al. [16] present new 
analytic free vibration solutions for orthotropic 
rectangular plates using a novel symplectic 
approach. The research introduces innovative 
methods for analyzing the vibrational behavior of 
orthotropic plates. 

Zhang et al. [17] contribute new exact series 
solutions for the transverse vibration of 
rotationally-restrained orthotropic plates. This 
research enhances the analytical methods available 
for understanding the transverse vibration 
characteristics of orthotropic plates, particularly 
when subject to rotational restraints. Chen et al. [18] 
propose an iso-geometric finite element method for 
the in-plane vibration analysis of orthotropic 
quadrilateral plates with general boundary 
restraints. The study presents an innovative 
numerical approach, providing a valuable tool for 
analyzing the vibrational behavior of orthotropic 
plates with complex boundary conditions. 

Amidst the existing research endeavors, a 
predominant focus has been directed toward 
exploring transverse vibrations in plates, leaving the 
domain of in-plane vibration research to be more 
represented. In papers [19-21], authors introduce 
the analytical symplectic superposition method to 
derive free vibration solutions for rectangular plates. 
Additionally, authors in papers [17] employ a finite 
integral transform solution to discern the vibration 
behavior of rectangular orthotropic thin plates 
under diverse boundary conditions. In papers [22, 
23], authors extend the integral transform method 
to scrutinize the buckling behavior of rectangular 
plates. While numerous other commendable 

achievements exist, a detailed discussion on each is 
beyond the scope of this overview. 

In this paper, an attempt is made to extend Ritz’s 
methodology for the modal analysis of laminated 
plates. The analysis in the study is carried out for an 
eight-layered Glass/Epoxy rectangular laminated 
plate with length a=0.38 m, width b=0.3 m and 
thickness h=0.0024 m. Properties of Glass/Epoxy 
material are given in Table 1. Three different plate 
configurations, namely, unidirectional - [0o 0 o 0 o 0 

o]s, cross-ply - [0 o 90 o 0 o 90o]s and angle ply - [45o 
30o -30o 90o]s symmetric laminates under different 
boundary conditions are considered for the study. 

 
2. THE RITZ METHOD 

 
For a laminated plate, the maximum Potential 

Energy in terms of the plate transverse 
displacement ‘w’ and bending stiffness is: 

         𝑈 =
1

2
∬{𝐷11 (

𝜕2𝑤

𝜕𝑥2)
2

+ 2𝐷12
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2 +

                  𝐷22 (
𝜕2𝑤

𝜕𝑦2)
2

+4𝐷66 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

} 𝑑𝑥𝑑𝑦               (1) 

and the maximum Kinematic Energy is: 

𝑇 =
1

2
𝜌ℎ𝜔2 ∬ 𝑤2 𝑑𝑥𝑑𝑦

                   
(2) 

In the lamination theory, the bending stiffness 
matrix which relates the stress couples to the plate 
curvatures is given by: 

[𝐷𝑖𝑗] =
1

3
∑[𝑄𝑖𝑗

(𝑘)
](𝑍𝑘

3 − 𝑍𝑘−1
3 )

𝑁

𝑘=1

 

where:  

[𝑄𝑖𝑗

(𝑘)
] = [𝑇𝑚

(𝑘)
]
−1

[𝑇𝑄
(𝑘)

][𝑅][𝑇𝑚
(𝑘)

][𝑅]−1     (3) 

The matrix [ ijQ ] is the reduced stiffness matrix, 

which is determined using the transformation 
matrix [𝑇𝑚]: 

[𝑇𝑚
(𝑘)

] = [

𝑐𝑜𝑠2 𝜃𝑘 𝑠𝑖𝑛2 𝜃𝑘 2 𝑐𝑜𝑠 𝜃𝑘 𝑠𝑖𝑛 𝜃𝑘

𝑠𝑖𝑛2 𝜃𝑘 𝑐𝑜𝑠2 𝜃𝑘 −2 𝑐𝑜𝑠 𝜃𝑘 𝑠𝑖𝑛 𝜃𝑘

− 𝑐𝑜𝑠 𝜃𝑘 𝑠𝑖𝑛 𝜃𝑘 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃𝑘 𝑐𝑜𝑠2 𝜃𝑘 − 𝑠𝑖𝑛2 𝜃𝑘

]  (4) 

[R] is known as the Reuter matrix and is given by:   

[𝑅] = [
1 0 0
0 1 0
0 0 2

]

                            

(5) 

and the stiffness coefficients are given by: 

[𝑄(𝑘)] =

[
 
 
 
 
 

𝐸𝐿
(𝑘)

(1−𝜗𝐿𝑇
(𝑘)

𝜗𝑇𝐿
(𝑘)

)

𝐸𝑇
(𝑘)

𝜗𝐿𝑇
(𝑘)

(1−𝜗𝐿𝑇
(𝑘)

𝜗𝑇𝐿
(𝑘)

)
0

𝐸𝐿
(𝑘)

𝜗𝑇𝐿
(𝑘)

(1−𝜗𝐿𝑇
(𝑘)

𝜗𝑇𝐿
(𝑘)

)

𝐸𝑇
(𝑘)

(1−𝜗𝐿𝑇
(𝑘)

𝜗𝑇𝐿
(𝑘)

)
0

0 0 𝐺𝐿𝑇
(𝑘)

]
 
 
 
 
 

     

      (6) 
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It is a known fact that the system’s total energy 
is constant at any time, which means: 

𝑈 = 𝑇 or 𝑈 − 𝑇 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡                (7) 

The series approximation considered in Ritz’s 
method is: 

𝑤(𝑥, 𝑦) = ∑ ∑ 𝐴𝑚𝑛
𝑄
𝑛=1

𝑃
𝑚=1 ⋅ 𝑋𝑚(𝑥) ⋅ 𝑌𝑛(𝑦)

       
(8) 

where Xm and Yn are the admissible functions 
that form the functional basis and Amn represents 
the amplitude coefficients to be determined. P and 
Q are the limits of series expression whose product 
gives the number of modes that can be studied, and 
as they increase in value, the accuracy of the results 
would increase. In general, they can take values like 
P=3 and Q=3 gives 9 modes of frequencies; P=3 and 
Q=6 results in 18 different modes. In this 
investigation, P and Q are taken to be 6 and this 
gives a total of 36 vibrational frequency modes.  

Applying the law of conservation of energy is 
shown as follows: 

𝜕𝑈

𝜕𝐴𝑖𝑘
−

𝜔2𝜌ℎ

2

𝜕

𝜕𝐴𝑖𝑘
∬𝑤2𝑑𝑥𝑑𝑦 = 0

               
(9) 

where ikA  is any one of the coefficients Amn.  

The solution of the equation (9), a system of linear 
homogeneous equations with Amn as unknowns. 

The natural frequencies (1, 2 …) are determined 
by taking the condition that the determinant of the 
system must vanish. Table 1 shows the properties 
of the material that is used. 

 
Table 1. Properties of Glass/Epoxy material 

Control factors Units Level I 

(A) Longitudinal Modulus 𝐸𝐿 (GPa) 29.9 

(B)Transverse Modulus 𝐸𝑇 (GPa)
 

5.85 

(C) Shear Modulus 𝐺𝐿𝑇 (GPa) 2.4 

(D) Density 𝜌 (kg/m3) 1560 

(F) Poisons ratio 𝜗𝐿𝑇 0.24 

  
3. FUNCTIONAL BASIS 

 
Different types of beams are distinguished by 

their end conditions. A beam can have infinite 
normal modes shown by its transverse oscillations. 
The method of determining the set of characteristic 
functions that define these normal modes for any 
type of beam is available in standard references 
such as [7, 8]. Also, this issue is discussed in the 
standard textbook by Jean Marie Berthelot. The 
characteristic functions for the six types of beams 
used are as follows:   

 

3.1 Beam Functions for C-C, C-S, C-F, S-S and S-F 
Combinations 
 

For clamped edges at x=0 and x=a:  

𝑋𝑚(𝑥) = 𝑐𝑜𝑠ℎ 𝜆𝑚
𝑥

𝑎
− 𝑐𝑜𝑠 𝜆𝑚

𝑥

𝑎
− 𝛾𝑚 (𝑠𝑖𝑛ℎ 𝜆𝑚

𝑥

𝑎
−

                                                𝑠𝑖𝑛 𝜆𝑚
𝑥

𝑎
)
                            

(10) 

In the similar way, equation for Yn(y) is obtained. 
 

3.2  Free-Free Beam Functions  
 

For free edges at x=0 and x=a: 

𝑋1(𝑥) = 1                              (11) 

𝑋2(𝑥) = √3 (1 − 2
𝑥

𝑎
)                     (12) 

𝑋𝑚(𝑥) = 𝑐𝑜𝑠ℎ 𝜆𝑚
𝑥

𝑎
+ 𝑐𝑜𝑠 𝜆𝑚

𝑥

𝑎
− 𝛾𝑚 (𝑠𝑖𝑛ℎ 𝜆𝑚

𝑥

𝑎
+

                                           𝑠𝑖𝑛 𝜆𝑚
𝑥

𝑎
)                                 (13) 

Lambda and Gamma values for various boundary 
conditions were evaluated using MATLAB code and 
presented in Table 2. 
 

Table 2. Values of and for 3-different Boundary 
Conditions 

Type of 
Beam 

m (or) n Lambda () Gamma () 

(A) 
Clamped-
Clamped 

1

2

3

4

5

6

7

8

9

10

 

4.7302 00

7.8534 00

1.0995 01

1.4132 01

1.7275 01

2.0427 01

2.3563 01

2.6701 01

2.9058 01

3.2209 01

e

e

e

e

e

e

e

e

e

e

+

+

+

+

+

+

+

+

+

+

 

9.8250 01

1.0007 00

9.9996 01

1.0000 00

9.9999 01

1.0000 00

9.9999 01

1.0000 00

1.0000 00

1.0000 00

e

e

e

e

e

e

e

e

e

e

−

+

−

+

−

+

−

+

+

+

 

(B) 
Clamped-

Simply 
Supported 

1

2

3

4

5

6

7

8

9

10

 

3.9331 00

7.0685 00

1.0210 01

1.3345 01

1.6487 01

1.9628 01

2.2770 01

2.5918 01

2.9059 01

3.2201 01

e

e

e

e

e

e

e

e

e

e

+

+

+

+

+

+

+

+

+

+

 

7.3409 01

1.0184 00

9.9922 01

1.0000 00

9.9999 01

1.0000 00

9.9999 01

1.0000 00

1.0000 00

1.0000 00

e

e

e

e

e

e

e

e

e

e

−

+

−

+

−

+

−

+

+

+

 

(C) 
Clamped-

Free 

1

2

3

4

5

6

7

8

9

10

 

1.8752 00

4.6939 00

7.8555 00

1.0994 01

1.41379 01

1.7278 01

2.04211 01

2.3561 01

2.9059 01

3.2201 01

e

e

e

e

e

e

e

e

e

e

+

+

+

+

+

+

+

+

+

+

 

7.3409 01

1.0184 00

9.9922 01

1.0000 00

9.9999 01

1.0000 00

9.9999 01

1.0000 00

1.0000 00

1.0000 00

e

e

e

e

e

e

e

e

e

e

−

+

−

+

−

+

−

+

+

+
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4. DETERMINATION OF Amn AND NATURAL 
FREQUENCIES 
 
By using Equations (1) to (8), the set of Equations 

(9) can be reduced to a very simplified form as  

∑ ∑ [𝐶𝑚𝑛
(𝑖𝑘)

−𝜆𝐶𝑚𝑖𝑛𝑘
0000]𝑄

𝑛=1
𝑃
𝑚=1 𝐴𝑚𝑛 = 0

         
(14) 

where 𝜆 = 𝜔2𝜌ℎ𝑎3𝑏 and 𝜔 = 2𝜋𝑓            (15) 

where is the angular frequency in rad/sec and f is 
the frequency in Hz. 

𝐶𝑚𝑖𝑛𝑘
0000 = 1 for 𝑚𝑛 = 𝑖𝑘 

𝐶𝑚𝑖𝑛𝑘
0000 = 0 for 𝑚𝑛 ≠ 𝑖𝑘 and 

𝐶𝑚𝑛
(𝑖𝑘)

= {
𝑏

𝑎
𝐷11𝐶𝑚𝑖𝑛𝑘

2200 +
𝑎3

𝑏3 𝐷22𝐶𝑚𝑖𝑛𝑘
0022 +

𝑎

𝑏
𝐷12[𝐶𝑚𝑖𝑛𝑘

2002 +

                               𝐶𝑚𝑖𝑛𝑘
0220] + 4𝐷66

𝑎

𝑏
𝐶𝑚𝑖𝑛𝑘

1111}                    (16) 

Equation (14) gives as many equations as PQ 

with each ‘ik’; the characteristic values  from the 
condition that the determinant of this system of 
equations must vanish. When there are more than 
three equations in the system, it is not advisable to 
go for mathematical expansion of the determinant 

and solve for the roots of the polynomial in . In 

such cases, it is suggested to solve for  by iterative 
procedures. One of the advantages of using beam 
functions for Xm and is Yn that the diagonal terms in 
the determinant are significant compared to other 
terms. So, the characteristic values and modes can 
be found by following the simple iteration 
procedure Ritz used [6]. 

Using the Equation (16), 𝐶𝑚𝑛
(𝑖𝑘) values are 

calculated. For each combination of ‘ik’ with a total 

range of PQ, PQ number of 𝐶𝑚𝑛
(𝑖𝑘) coefficient values 

are obtained. So the total number of 𝐶𝑚𝑛
(𝑖𝑘) would be 

PQ by PQ. The next step is to form the system of 
equations from the Equation (14).  

Total PQ equations with each combination of 'ik' 
were obtained, as shown: 

(𝐶11
11 − 𝜆)𝐴11 + 𝐶12

11𝐴12 + 𝐶13
11𝐴13 + ⋯+ 𝐶21

11𝐴21

+ 𝐶22
11𝐴22 + ⋯ = 0 

𝐶11
12𝐴11 + (𝐶12

12 − 𝜆)𝐴12 + 𝐶13
12𝐴13 + ⋯+ 𝐶21

12𝐴21 +

                                    𝐶22
12𝐴22 + ⋯ = 0  (17) 

 

𝐶11
13𝐴11 + 𝐶12

13𝐴12 + (𝐶13
13 − 𝜆)𝐴13 + ⋯+ 𝐶21

13𝐴21 +

                                          𝐶22
13𝐴22+. . . = 0. 

First, the diagonal terms of the obtained values 

of the coefficient 
( )ik

mnC are examined, which means 

that it is necessary to move from the lowest 
frequency to higher modes. Then the predominant 
amplitude coefficient Amn corresponding to the 

most negligible value from the ( )ik

mnC coefficients is 

identified and its value is taken as unity for each 
mode. If it is taken that A11=1, the above system of 
equations (17) is rearranged as follows: 

𝜆 = 𝐶11
11 + 𝐶12

11𝐴12 + 𝐶13
11𝐴13+. . . +𝐶21

11𝐴21 +

                                           𝐶22
11𝐴22 + ⋯                          (18a) 

𝐴12 = −(𝐶11
12 + 𝐶13

12𝐴13+. . . . . . . . +𝐶21
12𝐴21 +

                                 𝐶22
12𝐴22+. . . )/(𝐶12

12 − 𝜆)                 (18b) 
𝐴13 = −(𝐶11

13 + 𝐶12
13𝐴12+. . . +𝐶21

13𝐴21 +

                                 𝐶22
13𝐴22+. . . )/(𝐶13

13 − 𝜆)                 (18c) 
𝐴21 = −(𝐶11

21 + 𝐶12
21𝐴12 + 𝐶13

21𝐴13+. . . +𝐶22
21𝐴22+. . . )/

                                           (𝐶21
21 − 𝜆)                               (18d) 

𝐴22 = −(𝐶11
22 + 𝐶12

22𝐴12 + 𝐶13
22𝐴13+. . . +𝐶21

22𝐴21+. . . )/

                                               (𝐶22
22 − 𝜆)                             (18e) 

For the first trace in this iterative procedure, the 
initial values for A12, A13,… A21, A22 are taken as zero. 
The first trail value is calculated from Equation (18a) 
and then A12 is calculated from Equation (18b). 
Using this improved value of A12 and the first trail 
values for other Amn, A13 is calculated from Equation 
(18c). This procedure is continued for all the 
remaining equations. After obtaining all the 
improved values for Amn, they are substituted back 

into Equation (18a) to get a second trail value for . 
Again, the same procedure is repeated to calculate 
A12, A13,… A21, A22. The procedure is repeated till the 

values of  and Amn are close enough in the 
successive iterations to give the required accuracy. 

The same procedure is applied for the higher 
frequencies. The next predominant amplitude 
coefficient is identified and its value is taken as unity. 

After calculating the  values, natural frequencies 

() can be calculated from equation (15). Knowing 
the relative values of Amn and the beam functions Xm 
and Yn, the shape of each vibrational mode can be 
obtained from Equation (8). Lambda and Gamma 
values for various boundary conditions were 
evaluated using MATLAB code and presented in the 
Table 3. 
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Table 3. Values of and for other 3-different Boundary 
Conditions 

Type of 
Beam 

m (or) n Lambda () Gamma () 

(A) Simply 
Supported-

Simply 
Supported 

1

2

3

4

5

6

7

8

9

10

 

3.9270 00

7.0685 00

1.0210 01

1.3351 01

1.6493 01

1.9634 01

2.2776 01

2.5918 01

2.9059 01

3.2201 01

e

e

e

e

e

e

e

e

e

e

+

+

+

+

+

+

+

+

+

+

 

1.0007 00

1.0000 00

1.0000 00

9.9999 01

1.0000 00

9.9999 01

1.0000 00

1.0000 00

1.0000 00

1.0000 00

e

e

e

e

e

e

e

e

e

e

+

+

+

−

+

−

+

+

+

+

 

(B) Simply 
Supported-

Free 

1

2

3

4

5

6

7

8

9

10

 

1.8752 00

4.6939 00

7.8555 00

1.0994 01

1.4137 01

1.7278 01

2.0421 01
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5. RESULTS AND DISCUSSION 

  
5.1 Application of the Ritz Method  

 
An Angle ply plate- [45o 30o -30o 90o]s which is 

clamped at the end x=0, simply supported at x=1 
and y=0 and free at the end y=1. It is Clamped-
Simply Supported in X-direction and Simply 
Supported-Free in Y-direction. Equation (10) is to be 
taken for Xm and Yn. The calculations for this 
problem is carried out for P=6 and Q=6 by taking m 
and n equal to 1, 2, 3, 4, 5, 6 which gives a 36-term 

series based solution. The fibre orientation is  =0o. 
Using the properties of Glass/Epoxy material, [Q] 
matrix can be obtained. From [Q] matrix and 

transformation matrix, [ Q ] matrix is calculated, 

which in turn is used in finding the [D] matrix from 
Equation (3). The amplitude coefficient 

corresponding to each pair of lambda and gamma 
for various combinations of boundary conditions is 
shown in Table 4. 

Equation (14) gives a system of 36 equations 
with Amn as unknowns. The predominant amplitude 
coefficients are selected by examining the diagonal 
terms of 𝐶𝑚𝑛

(𝑖𝑘)  and the iterative procedure is 
followed to obtain natural frequencies and mode 
shapes of first 36 modes. The Amplitude 
Coefficients of the first five modes and their 
frequency values are shown in Table 4 and Table 5. 
Mode shapes are the pattern of displacement used 
to identify the severely loaded locations during 
oscillation for the first five modes, shown in Figs. 1-
5, respectively. The free boundary displaces more 
and produces severe conditions for failure owing to 
its high flexibility. The uniqueness of mode shape in 
vibration performance was shown above clearly 
shown in Figs.1-5. 

 

 
 

Fig. 1. Mode 1 for CSSF: 3D-Mode and Top View of Mode 

 

  

Fig. 2. Mode 2 for CSSF: 3D-Mode and Top View of Mode 

 
 

  

Fig. 3. Mode 3 for CSSF: 3D-Mode and Top View of Mode 
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  Fig. 4. Mode 4 for CSSF: 3D-Mode and Top View of Mode 

 

  
Fig. 5. Mode 5 for CSSF: 3D-Mode and Top View of Mode 

 

Sometimes, mode shape repetition may be 
observed for two consecutive modes as we keep 
moving from Mode 1 to Mode 36. For example, let 
us assume that mode shapes for Amn and ikA  are in 

match. To avoid such cases, once it is taken as Amn=1 

and Aik=1. Both are taken as unity where is the 
dominant coefficient and when Aik is Amn 

the 
dominant amplitude, it is taken as Aik=1 and Amn=-1. 
The first case would result in the same mode shape 
which seemed to be a match, and the latter case 
would change the orientation of the mode shape. 
The frequency values remain unchanged. 
 

 
 

 

Table 4. Amplitude Coefficients (Amn) for Angle ply glass/epoxy laminate under CSSF 
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((5294505186201671 cos((2687  u)/512))/576460752303423488 - (5294505186201671 cosh((2687  u)/512))/576460752303423488 - (11922165806148904942216279265303 sin((2687  u)/512))/1298074214633706907132624082305024 + (11922165806148904942216279265303 sinh((2687  u)/512))/1298074214633706907132624082305024) (cos((765  v)/512) - cosh((765  v)/512) - (4586769036238601 sin((765  v)/512))/4503599627370496 + (4586769036238601 sinh((765  v)/512))/4503599627370496) -...- (cos((11  v)/2) - cosh((11  v)/2) - (562949988693295 sin((11  v)/2))/562949953421312 + (562949988693295 sinh((11  v)/2))/562949953421312) ((5607439392264041 cos((3199  u)/512))/36893488147419103232 - (5607439392264041 cosh((3199  u)/512))/36893488147419103232 - (789176936131050502198054453271 sin((3199  u)/512))/5192296858534827628530496329220096 + (789176936131050502198054453271 sinh((3199  u)/512))/5192296858534827628530496329220096)
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u

((7531839051567769 cos((13  u)/4))/73786976294838206464 - (7531839051567769 cosh((13  u)/4))/73786976294838206464 - (33920387637893044732123525645665 sin((13  u)/4))/332306998946228968225951765070086144 + (33920387637893044732123525645665 sinh((13  u)/4))/332306998946228968225951765070086144) (cos((14335  v)/4096) - cosh((14335  v)/4096) - (2251875368850541 sin((14335  v)/4096))/2251799813685248 + (2251875368850541 sinh((14335  v)/4096))/2251799813685248) -...+ ((951120067472435 cos((641  u)/512))/18014398509481984 - (951120067472435 cosh((641  u)/512))/18014398509481984 - (2142622233052990509854137217365 sin((641  u)/512))/40564819207303340847894502572032 + (2142622233052990509854137217365 sinh((641  u)/512))/40564819207303340847894502572032) (cos((14335  v)/4096) - cosh((14335  v)/4096) - (2251875368850541 sin((14335  v)/4096))/2251799813685248 + (2251875368850541 sinh((14335  v)/4096))/2251799813685248)
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((7531839051567769 cos((13  u)/4))/73786976294838206464 - (7531839051567769 cosh((13  u)/4))/73786976294838206464 - (33920387637893044732123525645665 sin((13  u)/4))/332306998946228968225951765070086144 + (33920387637893044732123525645665 sinh((13  u)/4))/332306998946228968225951765070086144) (cos((14335  v)/4096) - cosh((14335  v)/4096) - (2251875368850541 sin((14335  v)/4096))/2251799813685248 + (2251875368850541 sinh((14335  v)/4096))/2251799813685248) -...+ ((951120067472435 cos((641  u)/512))/18014398509481984 - (951120067472435 cosh((641  u)/512))/18014398509481984 - (2142622233052990509854137217365 sin((641  u)/512))/40564819207303340847894502572032 + (2142622233052990509854137217365 sinh((641  u)/512))/40564819207303340847894502572032) (cos((14335  v)/4096) - cosh((14335  v)/4096) - (2251875368850541 sin((14335  v)/4096))/2251799813685248 + (2251875368850541 sinh((14335  v)/4096))/2251799813685248)

v
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Table 5. Angular and Natural frequencies of Angle ply glass/epoxy laminate under CSSF 

The examined variable Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Angular Frequency (rad/sec) 2.9e+02 7.3e+02 8.1e+02 1.3e+03 1.5e+03 

Frequency (Hz) 4.7e+01 1.1e+01 1.2e+02 2.1e+02 2.4e+02 

 

6. CONCLUSIONS 
 
Thus, using an iterative procedure, the Ritz 

methodology has been successfully developed and 
implemented for laminated plates. The method can 
conveniently handle 36 possible combinations of 
boundary conditions for rectangular plates. The 
present numerical results are validated with the 
experimental results published in research [1]. 

Under a specific boundary condition for 
unidirectional laminates, the frequencies increased 
as the fibre orientation increased for θ = 0o, 30o and 
60o. As the θ increased, the stiffness values 
improved, resulting in increased 𝐶𝑚𝑛

(𝑖𝑘)
 coefficients 

and better characteristic values . Among the three 
plate configurations considered, most boundary 
conditions showed better results for angle-ply 
laminate. This is also due to the effect of θ in each 
layer resulting in better 𝐶𝑚𝑛

(𝑖𝑘)  coefficients. CCCC 
boundary condition showed the maximum natural 
frequencies among all 36 boundary conditions. As 
per its characteristics, CC edge condition has the 

maximum m and n values resulting in higher Beam 
functions. This finally provided maximum natural 

frequencies from the better  𝐶𝑚𝑛
(𝑖𝑘)  coefficients and 

characteristic values . 
It is observed that natural frequencies are 

sensitive to fiber orientation, laminate sequence, 
and boundary conditions, whereas mode shapes 
are strongly influenced by the boundary conditions 
alone. 
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